Problems tagged with "feature maps"
Problem #061
Tags: feature maps, linear prediction functions
Suppose a linear prediction function \(H(\vec x) = w_1 \phi_1(\vec x) + w_2 \phi_2(\vec x) + w_3 \phi_3(\vec x) + w_4 \phi_4(\vec x)\) is fit using the basis functions
where \(\vec x = (x_1, x_2)^T\) is a feature vector in \(\mathbb R^2\). The weight vector \(\vec w\) is found to be \(\vec w = (1, -2, 3, -4)^T\).
Let \(\vec x = (1, 2)^T\). What is \(H(\vec x)\)?
Solution
We have:
Problem #079
Tags: feature maps, linear prediction functions
Suppose a linear prediction function \(H(\vec x) = w_1 \phi_1(\vec x) + w_2 \phi_2(\vec x) + w_3 \phi_3(\vec x) + w_4 \phi_4(\vec x)\) is fit using the basis functions
where \(\vec x = (x_1, x_2, x_3)^T\) is a feature vector in \(\mathbb R^3\). The weight vector \(\vec w\) is found to be \(\vec w = (2, 1, -2, -3)^T\).
Let \(\vec x = (1, 2, 1)^T\). What is \(H(\vec x)\)?